Remarks on a Theorem of Zygmund

نویسنده

  • P. ERDOS
چکیده

A well-known theorem of Zygmund (6) states that if n 1 < n 2 <. .. is a sequence of integers satisfying a (1) n~ +i/n~ > l+c (c > 0), k=1 converges for at least one x ; in fact the set of x for which (2) converges is of power c in any interval. Paley and Mary Weiss (5) extended this theorem for power series, i .e. (3) Y a i.znk k=1 converges for at least one z with I z I = 1 ; in fact the set of these z's is of power c on every arc. Kahane (3) calls a sequence of integers n 1 < n 2 <. .. a Zygmund sequence if whenever I a,; I > 0 the series (3) converges for at least one z with I z I = 1. Kennedy (4) proved that to every T,(k) > 0 (as k > o(there re is a sequence n l < n 2 <. .. for which n k+i/ni. > 1+9~ (k) and which is not a Zygmund sequence. Kennedy's result implies that in some sense Zygmund's theorem cannot be sharpened. Kahane (3) observes thatà slight change in the proof [of Kennedy] shows that a Zygmund sequence cannot contain arbitrarily long arithmetic progressions. Nothing more seems to be known .' I am going to prove the following

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Strong Law of Large Numbers

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...

متن کامل

Remarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''

In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...

متن کامل

Math 8230, Spring 2010 Lecture Notes

1. Introductory remarks 1 2. Energy and area 3 3. Exact Lagrangian submanifolds and the non-squeezing theorem 7 4. Sobolev spaces 9 5. The linear Cauchy–Riemann operator 20 5.1. Proof of the Calderón–Zygmund Theorem for p , 2 26 6. Local properties of J-holomorphic curves 30 6.1. Smoothness 31 6.2. The Carleman Similarity Principle and its applications 35 6.3. Isolation of intersection points a...

متن کامل

On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations

  In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...

متن کامل

A PROOF OF THE LOCAL Tb THEOREM FOR STANDARD CALDERÓN-ZYGMUND OPERATORS

We omit the proof. The following theorem is an extension of a local Tb Theorem for singular integrals introduced by M. Christ [Ch] in connection with the theory of analytic capacity. See also [NTV], where a non-doubling versions of Christ’s local Tb Theorem is given. A 1-dimensional version of the present result, valid for “perfect dyadic” Calder ón-Zygmund kernels, appears in [AHMTT]. In the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1965